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Abstract—This paper goes for taking care of the issues and talking 
about the properties of dihedral groups Dn. It has dependably been a 
troublesome undertaking in deciding the practices of reflections and 
rotational symmetries in these symmetry groups .We thusly 
concentrate the nature and properties of these symmetry components 
including the conjugacy class measure in Dn. It is found that the 
conjugacy classes of Dn, where the connection "Conjugacy" is a 
proportionality connection, decides the whole structure of the 
symmetry groups. The representations of the conjugacy class size of 
Dn uncovers that the order of the centers of Dn are 1 (for n-odd) and 
2 (for n-even), and thusly, prompting to investigation of two diverse 
class equations of Dn  
Keywords: Conjugacy Class, Center, Class Equation ,Rotations, 
Reflections 

1. INTRODUCTION 

In group hypothesis, a dihedral group is the group of 
symmetries of a consistent polygon, including both turns and 
reflections (Dummit, 2004). Dihedral groups are among the 
easiest cases of limited groups, and they assume an essential 
part in group hypothesis, geometry and science. There are two 
contending documentations for the dihedral bunches related to 
a polygon with n sides. Here Dn alludes to the symmetries of a 
consistent polygon with n sides. 

2. ELEMENTS OF THE GROUPS DN 

A general polygon with n sides has 2n distinct symmetries: n 
rotational symmetries and n reflection symmetries. The related 
pivots and reflections make up the dihedral amass Dn. On the 
off chance that n is odd, every pivot of symmetry associates 
the midpoint of one side to the inverse vertex. On the off 
chance that n is even, there are n/2 axes of symmetry 
associating the midpoints of inverse sides and n/2 axes of 
symmetry interfacing inverse vertices. In either case, there are 
n axes of symmetry inside and out and 2n components in the 
symmetry group. 

3. GROUP STRUCTURE OF DN 

The structure of two symmetries of a standard polygon is 
again symmetry, as on account of geometric protest. The 
arrangement operation is not commutative, and by and large, 
the group Dn has the accompanying components: 

Dn={r0 = e, r1, r2,…, rn-1, f0,f2, …, fn-1} with the following 
properties: 

ri rj = r(i+j)modn; 

ri fj = f(i-j)modn; 

fi fj = r(i-j)modn. 

The 2n elements of Dn can be written as e, r,r 2 , …, r n-1 , f, rf, 
r 2 f, …, r n-1f. The first n elements are the elements of the 
rotations and the remaining n elements are axes reflections (all 
have order 2). Obviously, the product of two rotations or two 
reflections is a rotation, while the product of a rotation and a 
reflection is a reflection. From the information provided so far 
on Dn, it is therefore convenient to write Dn as 

Dn = 〈r, f | r n = e = f 2 , f rf = r -1 , rfr = f 〉     1  

The group with representation as in equation 1 above or as 

Dn = 〈x,y|x 2 = y 2 = (xy) = e〉         2   

From the second presentation, it follows that Dn belongs to the 
class of Coxeter groups. 

4. CONJUGACY CLASSES IN DN 

Let G be any group. Two elements α and σ of G are said to be 
conjugate if α = γσγ-1 for some γ∈G (Samaila, 2010). In other 
words, if σ, γ ∈G, we define the conjugate of σ by γ or σ by γ -
1 to be the element γσγ-1 or γ -1σγ respectively. 

Proposition 1: Let G be a group, and define the relation ∼ on 
G by α∼σ if α and σ are conjugate in G. Then ∼ is an 
equivalence relation (Bianchi, 2001). Since the relation ∼ is an 
equivalence relation on G, its equivalence classes partition G. 
The equivalence classes under this relation are called the 
conjugacy classes of G. Hence the conjugacy class of α∈G is 
given by 

[α] = {γαγ-1|γ∈G}. 

Simple Results  

1. Let G be any group and let x, g1, g2, …, gn∈G. Then for 
any n, the conjugate of g1g2…gn by x is the product of the 
conjugate by x of g1, g2, …, gn.  

Proof: The conjugate of g1g2…gn by x is given by  

 x(g1g2…gn)x -1= 

(xg1x -1)(xg2x -1)…(xgnx -1)  3 
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Where xgix -1 is the conjugate of each gi , 1≤i≤n, by x. Hence 
the result follows.∗  
2. Let G be an abelian group. Then for any α∈G, the 

conjugacy class of α is the singleton set {α}.  

Proof: Let G be an abelian group. Let α,γ∈G. Then the 
conjugate of α by γ is γαγ-1. Now, the conjugacy class of α is 
given by 

  [α] = {γαγ-1|γ∈G} by definition. Now,        

 [α] = {(γα)γ -1|γ∈G},  

 [α] = {(αγ)γ -1|γ∈G}  

(G is abelian),                              

 [α] = {α(γγ-1)|γ∈G}   

 [α] = {α(e)|γ∈G} = {α}.∗  

Note that this is true for all abelian groups but not non-abelian 
groups.  

Lemma 2: Let G be a group and let α,β∈G. If α and β are 
conjugate, then α and β have the same order (Arid, 2004). 

Proof:   Since α and β are conjugate to each other, there exists 
an element γ ∈G such that              α = γβγ-1. Let o(α) = m and 
o(β) = n for some positive integers m and n. Now, by 
definition,    e = α m = (γβγ-1) (γβγ-1)…(γβγ-1) m-times 

= γβm γ -1 

This means that γ -1 eγ = β m , i.e. β m = e. Thus, n|m.  

Similarly, e = βn = (γ -1αγ)       (γ -1αγ)…(γ -1αγ) n-times 

  = γ -1α n γ  

  i.e. γeγ -1 = α n or α n = e. Thus, m|n, and hence, m = n. 

Remark: Consider the symmetric group S3 = {(1), (1 2), (1 3), 
(2 3), (1 2 3), (1 3 2)}. Now we have the conjugacy classes in 
S3 as follows:  

CS3 = {(1)} ; 

CS3 ={(23), (13), (12)} ; 

CS3 = {(123) ,(132)}  . 

In the conjugacy classes above, the second conjugacy class 
consists precisely of the elements of order 2 in the symmetric 
group S3, and the third conjugacy class consists precisely of 
the elements of order 3. But this doesn’t always happen quite 
so nicely, but it is true that conjugate elements do have the 
same order. 

5. DETERMINATION OF CONJUGACY CLASSES IN 
DN 

Every one of the appearance in Dn are conjugate to each other 
if n is odd, yet they fall into two conjugacy classes for n even. 
In the event that we think about the isometries of a consistent 

n-gon: for odd n there are turns in the group between each 
match of mirrors, while for even n just 50% of the mirrors can 
be come to from one by these pivots. Geometrically, in an odd 
polygon each hub of symmetry goes through a vertex and a 
side, while in an even polygon a large portion of the axes go 
through two vertices, and half go through two sides.  

Logarithmically, this is an occurrence of the conjugate Sylow 
hypothesis (for n odd): for n odd, every reflection, together 
with the personality, frame a subgroup of request 2, which is a 
Sylow 2-subgroup (2 = 21 is the most extreme force of 2 
separating 2n = 2(2k + 1)), while for n even, these request 2 
subgroups are not Sylow subgroups since 4 (a higher force of 
2) partitions the request of the group. Rather, for n even there 
is an external automorphism trading the two sorts of 
reflections (appropriately, a class of external automorphisms 
which are all conjugate by an inward automorphism). On 
account of a turn, every pivot is conjugate just to its opposite 
(which is an alternate revolution aside from 1 and, for even n, 
α n/2  

Theorem 5: The conjugacy classes in Dn are as follows, 
depending on the parity of n (Beltran, 2006). 

 1. Odd n: {1}, {α ±1 }, {α ±2 }, …, {α ±(n–1)/2 }, {α i β:0 ≤ i ≤ n–
1}.  

2. Even n: {1}, {α ±1 }, {α ±2 }, …, {α ±(n–2)/2 }, {α n/2 }, {α 
2iβ:0 ≤ i ≤ (n–2)/2} and {α 2i+1β: 0≤i≤(n–2)/2}.  

Proof: Every rotation in Dn is conjugate to its inverse, since 

βαj β = α -j . 

More generally, the formulas 

α iα jα -i = α j ; (α i β)α j (α i β) -1 = α -j ; 0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1, 

As i varies, it shows that the only conjugates of α j in Dn are α j 
and α -j . 

To find the conjugacy class of β, we compute 

α i βα-i = α 2i mod nβ; 

(α i β)β(α i β) -1 = α 2i mod nβ; 

1≤ i ≤ n. 

As i varies, α 2i β runs through the reflections in which α occur 
with an exponent divisible by 2. If n is odd then every integer 
modulo n is a multiple of 2 (since 2 is invertible mod n so we 
can solve a ≡ 2x mod n given a). Therefore 

{α 2i β : i∈Z} = {α i β : i∈Z }, 

So every reflection in Dn is conjugate to β for odd n. When n 
is even, however, we only get half the reflections, i.e. 

{β, α 2 β, α 4 β, …, α n-2β} as conjugates of β, demonstrated by 
Samaila, 2010 using D12. The other half are conjugate to αβ in 
the following manner: 

α i (αβ)α -i = α (2i+1)mod n β; 
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(α i β)(αβ)(α i β) -1 = α (2i-1)mod n β. 

As i varies, this gives us 

{αβ, α 3 β, …, α n-1β}. 

6. REPRESENTATION OF THE CONJUGACY 
CLASSES IN DN  

Considering the definition of Conjugacy class explained 
above, if we represent the elements of Dn as {I, α, α 2 , …, α n-1 
,α i β; 0 ≤ i ≤ n-1} where each element is to represent a 
conjugacy class, then we shall have the size of the conjugacy 
classes. Again, there are (n-1)/2 pairs of conjugate rotations 
when n is odd (exclude the identity) and (n-2)/2 pairs of 
conjugate rotations for even n (exclude the identity and α n/2 ). 
In both cases, whether n is even or odd, the sum of the sizes of 
the conjugacy classes in Dn equals 2n. 

Reprt.    I    α     α2………….… α (n-1)/2      β  
Size        1   2     2 ……………… 2             n 

Table 1: Conjugacy class representation in Dn for n 
odd  

 
 Reprt.     I     α     α2…………… α (n-2)/2       α n/2     β           

αβ  
Size         1    2       

 2 ……………. 2               1         n/2       n/2 
 Table 2: Conjugacy class representation in Dn for n even 

⅔ Obviously, in table 1 and 2 of the representations of the 
conjugacy classes of Dn above, the sum of the sizes of the 
conjugacy classes amounted to 2n.  

7. CENTER OF DN 

 Recall that the centralizer of the subgroup H in a group Dn is 
the set of elements of Dn which commute with every elements 
of H, namely 

 C(H)Dn = {g∈Dn | αg = gα for all α ∈ H}. Hence, the 
centralizer of the subgroup H of the group Dn is the subgroup 
H itself if H represent the set of all rotations (including 
identity) in Dn. Again the center of the group Dn is the 
subgroup of Dn defined by Z(Dn) = {g∈Dn : gh = hg ∀ h∈Dn}. 
Thus, Z(Dn) = {I}, the trivial subgroup if n is odd and Z(Dn) = 
{I, α n/2 } if n is even. The center of any group G is a normal 
subgroup of G. Hence, we have the following results.  

Theorem 6: The center of Dn (n ≥ 3) is trivial when n is odd 
and {I, α n/2 } when n is even (Beltran, 2006). 

 Proof: This follows immediately from tables 1 and 2 above, 
since the center is the set of elements which are in conjugacy 
classes of size 1.∗ 

 Corollary 7: If n≥6 is twice an odd number then Dn ≅ Dn/2 × 
Z/(2).  

Proof: Let H = 〈α 2 , β〉 ≅ Dn/2 and Z = {I, α n/2 }. Then Z is 
normal in Dn, HZ is a subgroup of Dn and the elements of H 

commute with the elements of Z. Let f : H × Z → Dn be a 
function defined by f(h, z) = hz for all h∈H, z∈Z. This 
function is a homomorphism since Z is the center of Dn.    The 
kernel is H∩Z, which is trivial. That is, α n/2∉H. Indeed, if α 
n/2∈H then either α n/2 = α 2i or α n/2 = α 2i β for some i. The first 
condition implies n/2 ≡ 2i mod n, which is impossible since 2i 
and the modulus n are even but n/2 is odd. The second 
condition is also impossible since it implies that β is a power 
of α. Since f is injective and O(H × Z) = 2n = O(Dn), f is an 
isomorphism. 

Remark: When n is divisible by 4, then there is no 
isomorphism in the Corollary above. This is because n and n/2 
will be even and the center of Dn will be a cyclic group of size 
2 and the center of Dn/2 × Z/(2) is a direct product of two 
cyclic groups of size 2. Hence, the centers are not isomorphic, 
so Dn is not isomorphic to Dn/2 × Z/(2).  

8. THE CLASS EQUATION OF A FINITE GROUP 

 Given any finite group G, let Z(G) be the center of G. Then 
G∩{Z(G)}c is a disjoint union of conjugacy classes. Let m be 
the number of conjugacy classes contained in G∩{Z(G)}c , 
and let i1, i2, …, im be the number of elements in these 
conjugacy classes. Then ij > 1 for all j, since the centre Z(G) 
of G is the subgroup of G consisting of those elements of G 
whose conjugacy class contains just one element, see tables 1 
and 2 above. Now the group G is the disjoint union of its 
Conjugacy classes, and therefore,  

|G| = |Z(G)| + i1 + i2 + … + im       5  
 

This equation is referred to as the class equation of the group 
G.  

Remark: From tables 1 and 2 above, we have Z(Dn) = {I} 
when n is odd and  

Z(Dn) = {I, α n/2 } when n is even, therefore the class equations 
of Dn can be written as  

|Dn| = |Z(Dn)| + siz(α) + siz(α 2 ) + … + siz(α (n-1)/2) + siz(β) 
(for n-odd)  

        = 1 + 2 + 2 + … + 2 + n; (2 + 2 + … (n-1)/2 times)  

And  

|Dn| = |Z(Dn)| + siz(α) + siz(α 2 ) + … + siz(α (n-2)/2) + siz(β) + 
siz(αβ) (for n-even) 

  = 2 + 2 + 2 + … + 2 + n/2 + n/2; (2 + 2 + … (n/2) times)  

9. SUMMARY 

The group structures of Dn were inspected and its Conjugacy 
classes. It was found that in Dn, its components are 
apportioned into two disjoint sets (one comprises of turns and 
the other for the reflections) of a similar request (Samaila, 
2010). Every pivot is conjugate to its converse, taking note of 
that for the personality component I and the turn α n/2 (for n-
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even), each is conjugate to itself. For n-odd, the reflection β is 
conjugate to each different reflections while for n-even, β is 
conjugate to half of the reflections while the reflection αβ is 
conjugate to the staying half of the reflections. We have 
additionally observed that the connection "Conjugacy" is an 
identicalness connection. The focal point of Dn is observed to 
be the inconsequential subgroup {I} when n is odd and {I, α n/2 
} when n is even. Lastly, two class conditions for Dn were 
determined. 
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